рабочая программа по физике 7-9 класс


Скачать публикацию
Язык издания: русский
Периодичность: ежедневно
Вид издания: сборник
Версия издания: электронное сетевое
Публикация: рабочая программа по физике 7-9 класс
Автор: Ерыкалова Галина Ивановна

Муниципальное автономное общеобразовательное учреждениеСалганская средняя общеобразовательная школаРабочая программапо физике7-9 классыСоставила учитель физики Ерыкалова Галина ИвановнаРабочая программа предназначена для преподавания дисциплины в 7 – 9 классах основной школы, реализуется в учебниках А.В. Перышкина «Физика» для 7, 8 классов и А.В. Перышкина, Е.М. Гутник «Физика» для 9 класса .Рабочая программа составлена с учетом Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от «17» мая 2012г. и зарегистрирован в Минюсте России «07» июня 2012г. За основу составления рабочей программы взята Программа основного общего образования. Физика. 7-9 классы Авторы: А.В. Перышкин, Н.В. Филонович, Е.М. Гутник. 1. Планируемые результаты освоения учебного предметаЛичностными результатами обучения физике в основной школе являются:1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этниче-ской принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современнойРоссии); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность к осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; веротерпимость, уважительное отношение к религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках,поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участияв социально значимом труде. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами; идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей действительности,ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера,формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях,угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественнойкультуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художествен-ном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимой ценности).9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиямсельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).Метапредметные результаты обучения физике в основной школе включают межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).Межпредметные понятияУсловием формирования межпредметных понятий, таких, как система, факт, закономерность, феномен, анализ, синтез является овладение обучающимися основами читательской компетенции, приобретение навыков работы с информацией, участие в проектной деятельности. В основной школе продолжается работа по формированию и развитию основ читательской компетенции. Обучающиеся овладеют чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования, осознанного планирования своего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и социальной деятельности. У выпускников будет сформирована потребность в систематическом чтении как средстве познания мира и себя в этом мире, гармонизации отношений человека и общества, создании образа «потребного будущего». При изучении физики обучающиеся усовершенствуют приобретенные навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий — концептуальных диаграмм, опорных конспектов);заполнять и дополнять таблицы, схемы, диаграммы, тексты. В ходе изучения физики обучающиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределенности. Они получат возможность развить способность к разработке нескольких вариантоврешений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.Предметные результаты обучения физике в основной школе.Выпускник научится:соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.Примечание. При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется;понимать роль эксперимента в получении научной информации;проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшиеметоды оценки погрешностей измерений;проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;проводить косвенные измерения физических величин:при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетомзаданной точности измерений;анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;использовать при выполнении учебных задач научно-популярнуюлитературу о физических явлениях, справочные материалы, ресурсы Интернета.Физика и ее роль в познанииокружающего мираПредметными результатами освоения темы являются:——понимание физических терминов: тело, вещество, материя;——умение проводить наблюдения физических явлений; измерять физические величины: расстояние, промежуток времени, температуру; определять цену деления шкалы прибора с учетом погрешности измерения;——понимание роли ученых нашей страны в развитии современной физики и влиянии на технический и социальный прогресс.Механические явленияПредметными результатами освоения темы являются:——понимание и способность объяснять физические явления: механическое движение, равномерное и неравномерное движение, инерция, всемирное тяготение, равновесие тел, превращение одного вида механической энергии в другой, атмосферное давление, давление жидкостей, газов и твердых тел,плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Земли, способы уменьшения и увеличения давления;——понимание и способность описывать и объяснять физические явления: поступательное движение, смена дня и ночи на Земле, свободное падение тел, невесомость, движение по окружности с постоянной по модулю скоростью, колебания математического и пружинного маятников, резонанс (в том числе звуковой), механические волны, длина волны, отражение звука, эхо;——знание и способность давать определения/описания физических понятий: относительность движения, первая космическая скорость, реактивное движение; физических моделей: материальная точка, система отсчета; физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительноеускорение при равномерном движении тела по окружности, импульс;——умение измерять: скорость, мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительноеускорение при равномерном движении по окружности, массу, силу, вес, силу трения скольжения, силутрения качения, объем, плотность тела, равнодействующую сил, действующих на тело, механическую работу, мощность, плечо силы, момент силы, КПД, потенциальную и кинетическуюэнергию, атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда;——владение экспериментальными методами исследования зависимости: пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от его массы, силы трения скольжения от площади соприкосновения тел и силы, прижимающей тело к поверхности (нормального дав-ления), силы Архимеда от объема вытесненной телом воды, условийплавания тела в жидкости от действия силы тяжести и силы Архимеда, зависимости периода и частоты колебаний маятника от длины его нити;——владение экспериментальными методами исследования при определении соотношения сил и плеч, для равновесия рычага;——понимание смысла основных физических законов: законы Ньютона, закон всемирного тяготения, закон Гука, закон сохранения импульса, закон сохранения энергии, закон Паскаля, закон Архимеда и умение применять их на практике;——владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости,равнодействующей сил, действующих на тело, механической работы, мощности, условия равновесия сил на рычаге, момента силы, КПД, кинетической и потенциальной энергии, давления, давления жидкости на дно и стенки сосуда, силы Архимеда в соответствии с поставленной задачей на основании использования законов физики;——умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем, плотности тела с его массой и объемом, силой тяжести и весом тела;——умение переводить физические величины из несистемных в СИ и наоборот;——понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, рычага, блока, наклонной плоскости, барометра-анероида, манометра, поршневогожидкостного насоса, гидравлического пресса и способов обеспечения безопасности при их использовании;——умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения; знание и умение объяснять устройство и действие космических ракет-носителей;——умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды).Тепловые явленияПредметными результатами освоения темы являются:——понимание и способность объяснять физические явления: диффузия, большая сжимаемость газов, малая сжимаемости жидкостей и твердых тел, конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, кипение, выпадение росы;——владение экспериментальными методами исследования при определении размеров малых тел, зависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре; давления насыщенного водяного пара; определения удельной теплоемкостивещества;——понимание причин броуновского движения, смачивания и несмачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;——понимание принципов действия конденсационного и волосного гигрометров, психрометра, двигателя внутреннего сгорания, паровой турбины и способов обеспечения безопасности при их использовании;——умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха;——понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;——овладение способами выполнения расчетов для нахождения: удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении,удельной теплоты сгорания топлива, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя;——умение пользоваться СИ и переводить единицы измерения физических величин в кратные и дольные единицы;——умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды).Электромагнитные явленияПредметными результатами освоения темы являются:——понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления с позиции строения атома, действия электрического тока, намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током, прямолинейное распространение света, образование тени и полутени, отражение и преломление света;——понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров испускания и поглощения;——знание и способность давать определения/описания физических понятий: магнитное поле, линии магнитной индукции, однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания,радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;——знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора;——понимание смысла основных физических законов и умение применять их на практике: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон отражения света, закон преломления света, закон прямолинейного распространения света;——умение измерять: силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;——владение экспериментальными методами исследования зависимости: силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от егодлины, площади поперечного сечения и материала, зависимости магнитного действия катушки от силы тока в цепи, изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало;——понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания и способов обеспечения безопасности при их использовании;——знание назначения, устройства и принципа действия технических устройств: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур, детектор, спектроскоп, спектрограф;——различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;——владение способами выполнения расчетов для нахождения: силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления проводника, работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора;——понимание сути метода спектрального анализа и его возможностей;——умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности).Квантовые явленияПредметными результатами освоения темы являются:——понимание и способность описывать и объяснять физические явления: радиоактивность, ионизирующие излучения;——знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Томсоном и Э. Резерфордом; протонно-нейтронная модель атомного ядра, модель процесса деления ядра атомаурана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада;——умение приводить примеры и объяснять устройство и принцип действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;——умение измерять мощность дозы радиоактивного излучения бытовым дозиметром;——знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;——владение экспериментальными методами исследования в процессе изучения зависимости мощности излучения продуктов распада радона от времени;——понимание сути экспериментальных методов исследования частиц;——умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды, техника безопасности и др.).Строение и эволюция ВселеннойПредметными результатами освоения темы являются:——представление о составе, строении, происхождении и возрасте Солнечной системы;——умение применять физические законы для объяснения движения планет Солнечной системы;——знание и способность давать определения/описания физических понятий: геоцентрическая и гелиоцентрическая системы мира;——объяснение сути эффекта Х. Доплера; знание формулировки и объяснение сути закона Э. Хаббла;——знание, что существенными параметрами, отличающими звезды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звезд и радиоактивные в недрах планет), что закон Э. Хаббла явился экспериментальным подтверждением модели нестационарной Вселенной, открытойА. А. Фридманом;——сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное.Выпускник получит возможность научиться:осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.Одним из путей повышения мотивации и эффективности учебной деятельности в основной школе является включение учащихся в учебно-исследовательскую и проектную деятельность, которая имеет следующие особенности:1) цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности подростков в предметной области определенных учебных дисциплин, не толькона развитие их способностей, но и на создание продукта, имеющего значимость для других;2) учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей и т. д. Строя различного рода отношения в ходе целенаправленной,поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;3) организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности. В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному видудеятельности.2.Содержание учебного предметаФизика и ее роль в познанииокружающего мираФизика — наука о природе. Физические тела и явления. Физические свойства тел. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы. Физические величины. Измерения физических величин: длины, времени, температуры. Физиче-ские приборы. Международная система единиц. Точность и погрешность измерений. Физические законы и закономерности. Физика и техника. Научный метод познания. Роль физики в формировании естественно-научной грамотности.Механические явленияМеханическое движение. Материальная точка как модель физического тела. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира.Система отсчета. Физические величины, необходимые для описания движения, и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). Равномерное и равноускоренное прямолинейное движение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Равномерное движение по окружности. Инерция. Инертность тел. Взаимодействие тел. Массатела. Измерение массы тела. Плотность вещества. Сила. Единицы силы. Инерциальная система отсчета. Законы Ньютона. Свободное падение тел. Сила тяжести. Закон всемирного тяготения. Искусственные спутники Земли. Сила упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжестии массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая сил. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике. Искусственные спутники Земли1. Первая космическая скорость. Импульс. Закон сохранения импульса. Реактивное движение. Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии. Простые механизмы. Условия равновесия твердого тела,имеющего закрепленную ось движения. Момент силы. Центр тяжести тела. Рычаг. Равновесие сил на рычаге. Рычаги в технике, быту и природе. Подвижные и неподвижные блоки. Равенство работ при использовании простых механизмов («золотое правило» механики). Виды равновесия. Коэффициент по-лезного действия механизма. Давление. Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление газа. Объяснение давления газа на основе молекулярно-кинетических пред-ставлений. Передача давления газами и жидкостями. Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Атмосферное давление. Методы измерения атмосферного давления. Опыт Торричелли. Барометр-анероид, манометр. Атмосферное давление на различных высотах. Гидравлическиемеханизмы (пресс, насос). Поршневой жидкостный насос. Давление жидкости и газа на погруженное в нихтело. Закон Архимеда. Условия плавания тел. Плавание тел и судов. Воздухоплавание. Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Ампли-туда, период, частота колебаний. Гармонические колебания. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью еераспространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс.Тепловые явленияСтроение вещества. Атомы и молекулы. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения твердыхтел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярно-кинетических представлений. Тепловое движение. Тепловое равновесие. Температура.Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Влажность воздуха. Объяснение изменения агрегатного состояниявещества на основе молекулярно-кинетических представлений. Работа газа при расширении. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.Электромагнитные явленияЭлектризация физических тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Делимость электрического заряда. Электрон. Закон сохранения электрического заряда. Проводники, диэлектрики и полупроводники. Электроскоп. Электрическое поле как особый вид материи.Строение атома. Напряженность электрического поля. Действие электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора. Электрический ток. Источники тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в металлах. Сила тока. Электрическое напряжение. Электрическое сопротивлениепроводников. Единицы сопротивления. Зависимость силы тока от напряжения. Закон Ома для участка цепи. Удельное сопротивление. Реостаты. Последовательное и параллельное соединение проводников. Работа электрического поля по перемещению электрических зарядов. Мощность электрического тока.Нагревание проводников электрическим током. Закон Джоуля—Ленца. Электрические нагревательные и осветительные приборы. Короткое замыкание. Правила безопасности при работе с электроприборами.Опыт Эрстеда. Магнитное поле. Индукция магнитного поля. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрическийдвигатель. Однородное и неоднородное магнитное поле. Правило буравчика. Обнаружение магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Правило левой руки. Магнитный поток. Опыты Фарадея. Электромагнитнаяиндукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции.Электромагнитные колебания. Колебательный контур. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Электромагнитная природа света. Скорость света.Источники света. Прямолинейное распространение света. Отражение света. Закон отражения света. Плоское зеркало. Изображение предмета в зеркале. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. Спектрограф и спектроскоп. Типы оптических спектров. Спектральный анализ.Квантовые явленияСтроение атомов. Планетарная модель атома. Поглощение и испускание света атомами. Происхождение линейчатых спектров. Опыты Резерфорда. Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Период полураспада. Закон радиоактивного распада. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смыслзарядового и массового чисел. Изотопы. Правила смещении для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.Строение и эволюция ВселеннойГеоцентрическая и гелиоцентрическая системы мира. Состав, строение и происхождение Солнечной системы. Физическая природа небесных тел Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной. Гипотеза Большого взрыва.Лабораторные работы1. Определение цены деления измерительного прибора.2. Измерение размеров малых тел.3. Измерение массы тела на рычажных весах.4. Измерение объема тела.5. Определение плотности твердого тела.6. Градуирование пружины и измерение сил динамометром.7. Определение выталкивающей силы, действующей на погруженное в жидкость тело.8. Выяснение условий плавания тела в жидкости.9. Выяснение условия равновесия рычага.10. Определение КПД при подъеме тела по наклонной плоскости.11. Определение количества теплоты при смешивании воды разной температуры.12. Определение удельной теплоемкости твердого тела.13. Определение относительной влажности воздуха.14. Сборка электрической цепи и измерение силы тока в ее различных участках.15. Измерение напряжения на различных участках электрической цепи.16. Измерение силы тока и его регулирование реостатом.17. Измерение сопротивления проводника при помощи амперметра и вольтметра.18. Измерение мощности и работы тока в электрической лампе.19. Сборка электромагнита и испытание его действия.20. Изучение электрического двигателя постоянного тока(на модели).21. Изучение свойств изображения в линзах.22. Исследование равноускоренного движения без начальнойскорости.23. Измерение ускорения свободного падения.24. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.25. Изучение явления электромагнитной индукции.26. Наблюдение сплошного и линейчатых спектров испускания.27. Измерение естественного радиационного фона дозиметром.28. Изучение деления ядра атома урана по фотографии треков.29. Изучение треков заряженных частиц по готовым фотографиям.3. Тематическое планирование7 класс8 класс9 класс