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О ТЕОРЕМЕ ПРЕДЕЛЬНОГО ТИПА, КАСАЮЩЕЙСЯ 

ТРИГОНОМЕТРИЧЕСКИХ ОПЕРАТОРОВ 

БАСКАКОВА  

Аннотация 

Статья выполнена в рамках исследования функций )(),...,( 1
r

mkki , 

которые являются аппроксимативными характеристиками 

тригонометрических операторов Баскакова.  
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            Рассматривается случай 2,1  mi .  

Доказано, что при любом   ,0r  выполняется    )()(lim )(1,1 rr kpk
p



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Тригонометрические операторы Баскакова 

О функциях Ф1 

Тригонометрические операторы Баскакова определены в работах [2,3]. Их 

форма с компактной записью ядра выглядит следующим образом (см., 

например, [2-4]): 
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В ряде работ, в связи с изучением приближения операторами Баскакова 

функций в точках разрыва производных и вблизи этих точек ([4,6]) 

рассматриваются функции  )(ri . Приведем их запись:     
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где целые параметры jkmi ,,  удовлетворяют неравенствам: 0m , mi 20  , 

mkkk  ...0 21 . 

В работе Т.Ю. Шерстюк [6] подробно исследовано поведение функций 

)(1 r  и )(2 r  при m=1 и зависимость от параметра k положения критических 

точек графика этих функций.  

  В этом пункте мы проведем сравнение функций )(1 r  при m=1 c 

функциями )(1 r  при m=2. Чтобы отличать эти две функции, мы в их 

обозначения введем обозначения некоторых параметров. Согласно (1) в случае 

m=1 наша функция определяется параметром k1, для удобства индекс будем 

опускать и обозначать функцию )()(1 rk . В случае m=2 функция )(1 r  

определяется параметрами k1,k1. Мы будем обозначать параметры k,p, а саму 

функцию  )(),(1 rpk . 

В [6] доказано, что )(
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k , на ),[ 0   возрастает и стремится к нулю, при этом 0   
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Учитывая, что 0)0()(1  k , получаем, что существует  00 ,0 r , для 

которого выполняются неравенства  0)()(1  rk , если  0,0 rr , 0)()(1  rk , 

если   ,0rr  (очевидно, что 0)( 0)(1  rk ,).  



Относительно  )(
),(1

r
pk

  известно, что существуют ),0(1
0  k  и 

),(2
0  pk  такие, что в точке 1

0  функция )(
),(1
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   имеет отрицательный 

минимум, точке 2
0  – положительный максимум, далее, 0)0(

),(1
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pk
,  на 

промежутке  1
0,0       )(,1 rpk  убывает, при этом, на промежутке  2

0
1
0 ,    )(1 r  

возрастает, на промежутке  ,2
0     )(,1 rpk  убывая стремится к нулю. 
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